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Traditionally, intake noise from internal combustion engine has not received much
attention compared to exhaust noise. But nowadays, the intake noise is a major contributing
factor to automotive passenger compartment noise levels. The main objective of this
paper is to identify the mechanism of generation, propagation and radiation of the intake
noise. With a simple geometric model, it is found that one of the main noise sources for the
intake stroke is the pressure surge, which is a compression wave due to the compressed air
near the intake valve after closing. The pressure surge, which has the non-linear acoustic
behavior, propagates and radiates with relatively large amplitude. In this paper, unsteady
compressible Navier}Stokes equations are employed for the intake stroke of axisymmetric
model having a single moving piston and a single moving intake valve. To simulate the
periodic motion of the piston and the valve, unsteady deforming mesh algorithm is
employed. For the purpose of perfect closing of the intake valve, the numbers of mesh are
changed using a Lagrange interpolation. In order to resolve the small amplitude waves at
the radiation "eld, essentially non-oscillatory (ENO) schemes are used. The source of the
intake noise can be identi"ed through the visualization of propagation in a "nite duct and
radiation to the far "elds. Comparison with measured data is given for in-duct pressure
showing a better agreement than the one-dimensional calculation data.
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1. INTRODUCTION

Recently, an intake noise, which was a relatively minor noise source in the past, has rapidly
become a noticeable one as automotive passengers who prefer a higher performance and
lower noise automobile increase. Particularly, the intake noise is closely related to engine
performance. Therefore, it is necessary to investigate in detail the noise source related to
#uid #uctuations caused by dynamic characteristics of the real engine.

Bender and Brammer [1] wholly described external radiation due to both intake and
exhaust noise. Nishio et al. [2] newly developed air intake system testing apparatus, called
the PULSATION SIMULATOR. Generally, in the past, development of the intake system
was conducted by giving priority to engine volumetric e$ciency. However, by using this
apparatus, they tried to apply low noise intake system to an early stage of engine
development in parallel with the study of volumetric e$ciency. Jones [3] has determined
the radiated exhaust noise by modelling of the full non-linear unsteady exhaust gas #ow in
that the linear acoustic analysis of exhaust system is limited for only a few cases. Evidence of
non-linear acoustic behavior of the intake noise was found by Lamancusa and Todd [4]
who predicted the intake noise source by experiment. It was reported that the large acoustic
0022-460X/01/150895#18 $35.00/0 ( 2001 Academic Press
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pressure #uctuations over 7 kPa peak to peak at the intake valve invoke the possibility of
non-linear acoustic e!ects. As the non-linear wave propagates through the duct,
considerable wave steepening occurs.

Most of the work reported in intake and exhaust system is related to the use of the
method of characteristics or the one-dimensional non-linear #ow calculations. Payri [5]
solved the one-dimensional #ow equations in the case of the exhaust system of a
single-cylinder engine by using MacCormack predictor}corrector schemes. He concluded
that this scheme is low dispersive and it shows less numerical oscillations when subject to
sudden changes in the #ow conditions, which may be a critical feature when considering the
#ow in I.C. engine exhaust system.

Apart from the "nite di!erence schemes, the "nite volume method is broadly used
for multi-dimensional #ow calculations. The method takes full advantage of an
arbitrary mesh, where a large number of options are open for the de"nition of the control
volumes around which the conservation laws are expressed. By the direct discretization
of the integral form of the conservation laws it can be ensured that the basic quantities
mass, momentum and energy will also remain conserved at the discrete level. In the
present paper, the "nite volume method with a spatially high accuracy ENO (essentially
non-oscillatory) scheme is applied to the axisymmetric equations in the generalized
co-ordinates.

Generally, owing to the complex geometry of intake and exhaust system the source term
that is arisen from the #ow is obtained by experiment and only the acoustic "eld is solved
with the source term in most cases. But as the computer is developed rapidly, the #uid and
the acoustic "elds can be solved directly by using computational aeroacoustics (CAA)
technique. An attempt to apply the ENO schemes to aeroacoustic problems was made by
Meadow et al. [6], who discussed spurious entropy waves in calculations of unsteady shock
in the #ow "eld. Yang [7] developed the new Lagrangian ENO interpolation of the third
order accuracy. Ko and Lee [8] improved the fourth order modi"ed #ux approach ENO
scheme of high resolution and high order. The ENO schemes used in this paper not only
produce sharp shock pro"les but also resolve the small amplitude waves.

At the radiation "elds, Thomson's non-re#ecting characteristic-based boundary
condition was used as the physical boundary conditions because inward propagating waves
in order not to contaminate the acoustic "elds.

In the present paper, a single moving piston and a single moving valve is used to
investigate the major intake noise source during intake stroke. Usually, the moving
mesh used to solve the multi-dimensional problem keeps the number of the mesh and
could not achieve the perfect closing of the valve. The important improvement in this
paper is that using a Lagrange interpolation can change the numbers of mesh, and so can
help in simulating the motion of the perfect closing of the valve. A comparison is given
between the present calculated data and measured data [9] for in-duct pressure with
satisfactory results.

2. GOVERNING EQUATIONS

The conservative forms of unsteady compressible axisymmetric Navier}Stokes equations
in generalized co-ordinates are considered in this paper as follows:
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The axisymmetric and two-dimensional equations are formulated in the case of a"1
and 0 respectively. FK t , GK t , HK t are related to viscous di!usion terms. ; and < are
contravariant velocity components of the x, y directions, respectively, and can be expressed
as follows:
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3. NUMERICAL METHOD

3.1. THE ENO SCHEMES IN MOVING CO-ORDINATES

By using third order Upwind-ENO schemes of Harten's #ux di!erence splitting type, the
numerical #ux term at the boundary surface is formulated as follows [10]:
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where l represents four characteristic waves in the case of two dimensions and D
`

is the
forward di!erence. W (z) is an entropy correction function and is usually applied to the
genuinely non-linear eigenvalues, and e is selected as some small number. In our study, W(z)
was used D z D only because the characteristic of the intake noise is softly non-linear. In
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equation (5), gl is a limiter function that determines the essentially non-oscillatory
characteristics. In the case of third order accuracy gl is given as
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where j is the mesh ratio (Dt/Dx) and superscripts # and ! represent positive- and
negative-running waves, al
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The characteristic variables, Dwl
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where the mean contravarient velocity and the contravarient's di!erentials are given as
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The right-hand characteristic matrix R
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in equation (4) and its constituting variables are

R
i`1@2

"

1 0 1 1

uN oN mI
y

uN #cN mI
x

uN !cN mI
x

vN !oN mI
x

vN#cN mI
y

vN!cN mI
y

1/2(uN 2#vN 2) oN (uN mI
y
!vN mI

x
) HM #cN (uN mI

x
#vN mI

y
) HM !cN (uN mI

x
#vN mI

y
)

. (15)

3.2. CREATING AND REMOVING MESH ALGORITHM WITH A LAGRANGE INTERPOLATION

For the simulation of perfect closing of the intake valve, creating and removing mesh
algorithm must be accompanied with appropriate interpolation that minimizes
interpolation error. In this study, third order Lagrange interpolation is used, which is
a basis of ENO interpolation. The Lagrange interpolating polynomial is simply
a reformulation of the Newton polynomial that avoids the computation of divided
di!erence. It can be represented concisely as
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where Q represents interpolating variables and P designates the &&product of ''. For the
third order accuracy, four mesh points and four #ow variables are required. In this
paper, conservative variables [o, ou, ov, oe

t
] are interpolated as in the following

procedure.

First, using a deforming mesh algorithm, mesh point moves to the next position and then
mesh system is regenerated adding one mesh point. Second, keeping the boundary values,
new mesh points are interpolated by using moving mesh point's values.

3.3. TIME INTEGRATION METHOD

The diagonally implicit approximate factorization (DIAF) method introduced by
Pulliam [11] was used for time integration but it has a problem for accurate unsteady
calculation since it has "rst order accuracy of the d-form. Therefore, Matuno's [12]
dk-correction method was employed to settle this problem. This method is able to have
arbitrary time accuracy for variable time step, and is to be used for any type of the spatial
derivative method. In this paper, dk-correction method with third order time accuracy
is used.
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3.4. NON-REFLECTING CHARACTERISTIC BOUNDARY CONDITION

Thompson's [13, 14] characteristics-based boundary condition was used as the physical
boundary conditions. At the inlet and outlet numerical boundaries of the m"constant,
waves are able to be considered as one dimension:

LqmQK #LmFK "0. (17)

Equation (17) can be presented by using characteristic variable at m"constant boundary,
and this can be decomposed as incoming and outgoing waves depending on the
characteristic value KK 's sign as shown below
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the boundary must not change as time passes. Therefore, equations (18) are formulated as
follows:
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By considering equation (17), the local one-dimensional inviscid (LODI) system can be
obtained at each point on the boundary. The LODI system can be cast in many di!erent
forms depending on the choice of variable [13]. In terms of primitive variables, the LODI
system is represented as follows:
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The resulting equations are easy to interpret and allow us to infer values for the wave
amplitude variations by considering the #ow locally as inviscid and one-dimensional. The
relations obtained by this idea are not physical boundary conditions exactly but should be
viewed as compatibility relations between the choices made for the physical boundary
conditions and the amplitudes of waves crossing the boundary [15]. Considering subsonic
out#ow boundary conditions, one can notice that three characteristic waves, ¸
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Figure 1. Schematic diagram and co-ordinate of a uniform duct with a moving piston.

igure 2. (a) Compressive "nite wave. (b) Spatial distribution of the density in two di!erent cases: ***,
-interpolation; ) ) ) ) ) ), Lagrange interpolation.
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4. VALIDATION

4.1. MOVING PISTON

For the validation of deforming mesh algorithm with a Lagrange interpolation, we
solved the moving piston problem. Figure 1 shows the schematic diagram and co-ordinate
system of a uniform duct with a moving piston. Mesh system is 201]11 and
non-dimensional time step, Dt is 0)001. Figure 2 represents a compressive "nite wave
that the piston accelerates (non-dimensional acceleration speed, a

p
"2)5) "rst to the

right and then moves with a constant velocity (non-dimensional velocity, u
p
"0)5).

The domain of calculation is changed but numbers of mesh are kept constant as time passes.
Figure 2(a) shows the pressure contour of compression wave developing to shock wave.
Figure 2(b) shows a comparison of the deforming mesh calculation only and calculation
with removing mesh points through the Lagrange interpolation. Thirty mesh points are
removed at the non-dimensional time of 0)6. Figure 3(a) represents expansion waves
orginated from deceleration of the piston. As shown in Figures 2(b) and 3(b), it seems that
the removing}creating mesh algorithm with Lagrange interpolation is suitably applied to
the motion of the piston.
Figure 3. (a) Centered expansion wave. (b) Spatial distribution of the density in two di!erent cases: ***,
non-interpolation; ) ) ) ) ) ), Lagrange interpolation.
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4.2. RADIATION OF THE LINEAR ACOUSTIC WAVE (BAFFLE PROBLEM)

The linear acoustic wave propagation and radiation due to a vibrating piston is simulated
in axisymmetric co-ordinates to simulate the radiated acoustic "eld from the intake duct
system. The conservative forms of axisymmetric Euler equations are used for the
computations. For the present work, improved characteristic radiation boundary
conditions are used for non-re#ecting acoustic radiation. On the radiation boundary, the
free-"eld impedance conditions are imposed to obtain the #uctuations of velocity and
pressure, while the density is evaluated by Thomson's characteristic non-re#ecting
boundary conditions as follows:
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where o@, p@ and u@
radial

are the #uctuations of density, pressure and radial velocity,
respectively (o

0
and a

0
are the ambient density and the speed of sound respectively) [16].

These relations are used as the non-re#ecting radiation boundary conditions for the
present computations in accordance with the density #uctuation obtained by Thomson's
non-re#ecting boundary conditions.

The schematic diagram is described in Figure 4. A grid system of 100]100 is used. The
results of computations by the third order accuracy ENO(ENO3) schemes are presented in
Figure 5. It is shown that the numerical solutions are in good agreement with the analytic
solutions. The acoustic waves are radiated well through the far"eld boundaries with little
re#ecting waves and propagated well along the inviscid wall keeping the wave fronts
undistorted.
Figure 4. Schematic diagram for the linear acoustic wave radiation problem: piston velocity u"10~4 sin(nt/5).



Figure 5. Solutions of axisymmetric linear acoustic wave propagation and radiation by third order ENO
scheme (t/Dt"450): (a) Pressure contour (**, numerical; ) ) ) ) ) ), analytic); (b) pressure #uctuation plot along the
x-axis (y"0); (c) pressure #uctuation plot along the y-axis (x"0), s, numerical (ENO3); **, analytic.
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5. RESULTS AND DISCUSSION

5.1. GRID SYSTEM AND DYNAMICS OF A PISTON AND A VALVE

The radiation of intake noise from an internal combustion engine is calculated
numerically by simulating the intake stroke of axisymmetric model having a single moving
cylinder and a single moving intake valve as shown in Figure 6. Mesh system consists of
four blocks, deforming mesh block in cylinder, creating}removing mesh block of shade
region, and non-moving blocks of duct and radiation "eld. The interpolation is applied to
only the creating and removing block so it was possible to minimize the interpolation error.
Moreover, it enabled to increase the time step. The computational grid system is composed



Figure 6. Schematic diagram of the model engine problem for intake noise.

Figure 7. Moving grid system during the intake stroke.
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TABLE 1

Operating characteristics of the model engine

Bore diameter (mm) 80)0
Valve diameter (mm) 33)0
Duct diameter (mm) 30)0
Duct length (mm) 385)0
Connecting rod length (mm) 131)9
Stroke (mm) 79)5
Compression ratio 9)4
Maximum valve lift (mm) 9)4
Intake valve open (deg) 163 BTDC
Intake valve closed (deg) 523 ABDC
Running condition (r.p.m.) 4500
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of an in-cylinder block of 21]25, an interpolation block of 37]4}20 (which is
creating}removing block), a duct block of 39]13 and a radiation "eld block of 28]37. To
simulate the periodic motion of the piston and the valve, a moving mesh system is used as
shown in Figure 7. The velocity of piston is formulated as follows:

S
p
/SM

p
"n/2 sin hC1#

cos h
(R2!sin2 h)1@2D ,

(23)
SM
p
"2¸N, R"l/a,

where N is the rotation number per second, ¸ is the stroke and l is the length of the
connecting lod. The intake valve is opened on 163 before top dead center (BTDC) and is also
closed on 523 after bottom dead center (ABDC) and valve's dynamics is based on the sine
curve. The main dimensions of the model engine are reported in Table 1.

5.2. INITIAL AND BOUNDARY CONDITIONS

In order to solve unsteady compressible Navier}Stokes equation by the numerical
schemes described in the previous section, an initial condition must be prescribed. The
initial conditions are set to be atmospheric pressure, atmospheric density, and zero velocity
all over the computational domain. In the case of a real engine, pressure in the cylinder
is a little higher than that near the valve after exhaust stroke, so the non-physical numerical
wave contaminates the solution during one cycle simulation. In the case of numerical
calculation, oscillating wave in the duct remains after one-cycle simulation, therefore
two-cycle simulation is performed. In our study, the initial conditions at the duct and at the
radiation "eld during the second-cycle simulation were set to be "rst-cycle simulation data.

No-slip boundary conditions at the wall, symmetric conditions at the axisymmetric line,
and non-re#ecting conditions at the radiation "eld are used. For the vortex #ow not to cross
the non-re#ecting boundary, the exit zone is used in the radiation "eld.

5.3. COMPRESSION WAVE PROPAGATION IN THE DUCT

Figure 8 shows a three-dimensional view of the pressure contours and mesh system
during the intake stroke. As the crank angle is 5803, it is obviously shown that the intake



Figure 8. Three-dimensional view of the pressure contours showing perfect closing of the intake valve.
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valve is perfectly closed. At the early stage, the intake valve is opened at 3443 and the piston
moves up to the TDC (top dead center*3603), compression wave propagates through the
duct. As the piston moves down, #uid begins to be drawn into the cylinder. In the cylinder,
especially near the valve, complicated vortex #ows are developed. As the #uid moves down,
the duct is abruptly halted after the intake valve is closed at 5923, its kinetic energy is



Figure 9. (a) Time history of the pressure wave in the duct during two-cycle simulation (ENO3).
(b) Comparison of the in-duct pressure between the measured data and calculated data: **, measured data;
} ) } )} ) } ) }, Lax}Wendro! (1-D); - - - - - - -, Present (ENO3-axisymmetric).
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converted into a large pressure surge (compression wave), which is clearly shown as
a compression wave in Figure 9(a). The comparison of the in-duct pressure between
measured data and calculated data at the middle of the duct is shown in Figure 9(b). Some
part of the compression wave is re#ected at the open duct end and propagates to the
intake valve as an expansion wave. Also, this expansion wave is re#ected at the intake
valve as a compression wave repetitively. Showing this phenomenon, its amplitude
oscillates in the duct and decays as time elapses. Figure 9(b) shows a fair agreement of
the present calculated data with the measured data. Moreover, an oscillating duct pressure
is exactly the same. An underestimation in one-dimensional calculation seems to be
caused by the unphysical duct end boundary condition [9]. As shown in Figure 12, a
#ow separation is generated by the #ow that is drawn into the duct from the radiation
"eld. This separation causes a pressure drop in the duct. So, it is di$cult to apply
an accurate boundary condition to the duct end boundary in the one-dimensional
calculation. However, in the region of intake valve closing, the present axisymmetric
and one-dimensional results are similar but do not agree with the measured data. It is
estimated that this discrepancy is due to the three-dimensional e!ect such as valve inlet
geometry.



Figure 10. (a) Time history of the radiated pressure. (b) Frequency spectrum.
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5.4. RADIATED SOUND FROM THE INTAKE DUCT

It is shown that a part of the compression wave inside the duct radiates with relatively
large amplitude as shown in Figure 10, which is estimated at a non-dimensional position
(x"14, y"1)5). This is one of the main noise sources for the intake stroke. As shown in
Figure 10(a), "rst- and second-cycle simulation results are somewhat di!erent. During the
second-cycle simulation, the radiated pressure is more expanded because the expansion
wave re#ects to the intake valve when the piston moves down. This phenomenon is good
from a volumetric e$ciency point of view but it is not good from a radiated sound pressure.
In Figure 9(a), it is not de"nitely shown because the #ow pressure is high compared with the
radiated sound pressure. Figure 10(b) shows a "ring cycle frequency (4500/60/2 rev"
37)5 Hz) at the running condition of 4500 r.p.m., and duct-oscillating frequency is 225 Hz
approximately. This frequency de"nitely shows that a compression wave propagates
through the duct and radiates to the far "eld with the speed of sound. A compression wave
propagates and re#ects as an expansion wave at the open duct, an expansion wave re#ects
as an expansion wave at the valve and an expansion wave re#ects as a compression wave at
the open duct. So a compression wave experiences four travels through the duct and this
propagation velocity is obviously the speed of sound of 346 m/s (38)5 cm]4]225 Hz)
approximately. In Figure 11, it is clearly shown that the sound pressure is radiated to the far



Figure 11. Pressure contours showing radiation of the expansion and compression wave to the far "eld
(contour plot in the cylinder and duct: p!p

0
, at the radiation "elds: (p!p

0
)]10, p

0
"101 kPa).
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"elds interacting with a vortex #ow at the crank angle of 6083. In Figure 12, on closing the
intake valve separation #ows are developed in the duct and vortex #ows are generated at
the radiation "eld. The waveforms in Figure 10(a) are similar to pressure forms in the duct.
However, rapid #uctuations are di!erent, which is relating to the vortex #ows interacting
with the compression wave at the radiation "elds.

6. CONCLUSIONS

With a simple geometric model, it was found that the major noise source of the intake
stroke was the pressure surge (compression wave), which is generated after intake valve
closing. The pressure surge that was converted by #uid's kinetic energy propagates and
radiates with a relatively large amplitude. Some part of the pressure surge is re#ected at the
open duct end and a part of it is radiated to the far "eld. So, its amplitude oscillates in
the duct and decays as time passes.

Unsteady deforming mesh algorithm with Lagrange interpolation was suitably applied
to the periodic motion of the piston and the valve. This enabled to change the number
of meshes, so it could help in simulating the motion of the perfect closing of the
valve.



Figure 12. Velocity vector plots at some instants of the intake stroke.

NUMERICAL ANALYSIS OF INTERNAL COMBUSTION ENGINE 911
In order to resolve the small amplitude waves at the radiation "eld, third order accurate
essentially non-oscillatory (ENO) schemes were used. The characteristic non-re#ecting
boundary conditions were employed well for the ENO schemes to present high-quality
numerical solutions.

A comparison was given between the present calculated data and measured data for
in-duct pressure with satisfactory results.
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